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cm* (TOI Qo = B@” Vl) ‘PI (7.4)‘ 

Here a = 1 CJ* (T,) ‘pl 1, f3 = 1 @,* (T,) rpo 1. Then multiplying (7.4) scalarly by u (Qd) 

and u ((pi), we obtain 

of (T,) = Bj (T,) bP0~%)~ af (To) (Qo.Qi) = fir (T,) 

Hence (Q,-,-cpl) = 1 and so ~1 = 'po. A contradiction. 

The author thanks E, F. Mishchenko for attention to the work and for useful comments. 
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We examine the game problem [l - 31 of the contact of two material points 
with unit masses moving in a three-dimensional space under the action of only 
the controlling forces F1 and F, arbitrary in direction. It is assumed that force 
F1 is bounded in momentum, while F, , in absolute value. In parallel we consi- 
der two problems on the minimax time up to “hard” (with respect to the coordi- 

nates) and up to “soft” (with respect to the coordinates and velocities) contact. 
In both problems the whole space of positions is divided into two regions. The 
optimal controls of the first (the minimizing) player (point) and of the second 
(the maximizing) player (point) are formed in the first region and the minimax 
time computed as well. The second player’s control permitting him to evade 
contact under any action of the first player is formed in the second region. A 

comparison is made with a previously-considered case [4] in which both points 
can move along certain fixed straight lines. 
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1. Let the equations of motion have the form 

x’ = y, y’=u+v (1.1) 
+ 

P- s 1 1 u dt = y(l)(z) > 0 (14 
0 

Ivl<l (1.3) 

Y(l) = Y + p1, CL(l) = p - I p1 I a 0 (1.4) 

Relations (1.1) - (1.4), in which x, y, U, V, pl are three-dimensional vectors and p, 
p(l) are nonnegative numbers, can be interpreted as equations of the relative (rl - 
r2 = x, rl’ - r2’ = y) motion of two points with masses ml and me whose posi- 
tions and velocities relative to some fixed center are given by the vectors (rl, r2) and 

(rr’t re’) , respectively. It is assumed that the points are subject to the action of only the 
controlling forces F1 and F,, arbitrary in direction and restricted by constraints (1.2), 
(1.3) with u = F, / ml and L; = -F 2 / m3. Constraint (1.2) allows the instantaneous 

variation of vector y and of number p by formulas (1.4), where pl is a finite vector 

with Euclidean modulus I pl I. In this case the control u = p1 6 is called an impulse 
control. 

The vector w = [z, y, pl is called the position, while the result of the impulse 
actions of the first point (player) is denoted by 

w(l) = [z, y(l) = y + p1 (w), p = p - I p1 (w) II 

If vector w(l) (t > 0) is specified as a function of time, then the vector w(l) (t - 0) 

is named the position w (t > 0) , while for t = 0 we take w (0) = 1~ (O), Y (O), 
p (())I. The pair of controls u (w, v), v (w) and the unique trajectory w(l) (t > 0, 

{u (w, V)? 7J (w)) 9 w (0)) corresponding to them are said to be admissible if constraints 

(1.2) (1.3) are fulfilled for all t and Eqs. (1.1) are satisfied for almost all t . Further- 
more, the trajectory is right-continuous for all t admits of a finite number of jumps on 

every finite interval 0 < t f t,, consistent with (1.4), and is absolutely continuous on 

the intervals of continuity. 
On the admissible trajectories we consider a game with the termination set (the con- 

tact set) 
M [I x 1 = 0, k (p - I y I) > 0, k = 611 

For k = 0 the velocity y is arbitrary and the contact is termed hard. For k = 1 the 
first player can instantaneously null his velocity and the contact is soft. At every possi- 

ble position the players solve one of two problems. 
Problem 1. Find a pair u” (w, v), v” (w) such that the time T [U (w,u), v (w)l 

of first hitting of a position onto set M satisfies the bounds 

T [u”, VI < T [u”, v”1 < T [u, ~“1 

Problem 2. Find a control z,‘~ (11’) such that under any control u (w, u) the position 
would not hit upon &?’ in finite time. 

The collections of positions admitting of a solution of Problem 1 and Problem 2 are 
denoted w” (M) and IV,, (M). BY ya, yp we denote the projections of vector y onto 

vector x and onto a plane perpendicular to vector .x, and we choose a right-hand triple 
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of unit vectors ia, ip, iy according to the formulas 

ja = 5 / Ix I, jp = yp ! I yp I for w E D,ll x I > 0, I YP I > 01 
ia = Jz i Ix I; ip, i-f are arbitrary for w E D,[ IX I > 0, /yp I = 01 

ja, jp, j,3 are arbitrary for w E D, [ I IL: I = 01 

Denoting the components of a three-dimensional vector along the indicated unit vectors 

by indices a, /3, 7;’ as a consequence of Eqs. (1. l), (1.2). (1.4) we obtain 

(n:I’=y,, Yz’=&+z:a~Y$/(J.J (1.5) 

l Yp 1. = uf3 t “p - i/z [ 93 I / 15 l 

(1) _ 
Ya - Ya + Pl.crr 1 YP’ I = f( l Y$ I + !A2 + k&r (1.8) 

Equations (1.5) - (1.7) follow from Eqs. (1.1) for w CZ D,, D,, Dy , respectively, 
while Eq. (1.8) follows from (1.4) for w CC D, U D,. It is clear that the solution 
depends solely on the quantities 1 II: I, Ya, I Y,s 1, CL, k ; we retain the notation w for 

this collection. 

2. We note one simple property of the problem. Let there exist a function Y (lo) 
satisfying the bounds Ya-tV<O (2.l) 

Q1(~,~)=~++((Ya+~)-~/yp2+~2i-I~ll(~~+~)~0 
and such that from the equality 

v (I J: I, Y < 0, IYP I = 09 PL, k) = 0 

there follows, for any I x2 ) < 1 x 1, p2 < p , the equality 

y (I 22 I7 Ya < 0, I Ya I = 0, p2, w = 0 

then the control 

~“=~(w)~i,-~Yyp~~~p, wCz[Yp2+v2>01 

u, = - v, WE [Yaa+v2=0] 

leads the position onto set M in the time 

T k, VI = - I x I 1 (Ya + v(w)) 

Indeed, the control uy = -v leads the trajectory away from the vector 

(2.2) 

(2.3) 

lo(‘) (0) = [I 32 (0) I, ?/‘,” (0) < 0, 1 ?/p (0) ( = 0, $1) (0) > 0, k] 

in accordance with the equations 

)“l’=?/(i)(o) ?/ *Xl!y~I’=o, -a *,a pL’=--12,1, v’ -0 (2.4) 

The bounds y, (l) (0) < 0, p (l) 0 > 0 follow from bounds (2.1). The derivative 41’ (W, ( ) 
Y)= i - / 17 ( > 0 is nonnegative and, consequently, the bound 41 (U-J, Y) 2 0 is not 
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violated for a motion by virtue of Eqs. (2.4), while the validity of the equation v’ = fl 

foikws from C&2), (2,3f, Equations (2.4) lead the position onto the set 1 I 1 = o with 
a preservation of the bound f-* + kg, = p - k 1 y f > 0. This signifies that the inclusion 
w (tI) E M is effected at the instant b, = --I (0) i ($I (0)) = - I z I / (Y, + y) , 

The reasonings presented bring us naturally to the investigation of the maximum of 
the function 

4~~*~,)=t”+~~-~~~“+(P-~Ya)2--~1~1/P 

with respect to the variable p in the region p ( 0 l Computing the first q@f and the 
second g@ derivatives with respect to p for fixed w, for u> E D, we have 

q(l) zzz -I (p - ~a) i 1 (w, p) + k - I x I i pz 
limq(l) = - 30, p--o (2.5) 

lim q(l) = 2 + k > 0, p---cr? 

qC”’ S --YP2j/3f2U,P)_t.2fXf!PS<0 

1 (w, p) = V’YP” “t (P - Y2 

In region D, we have 

4’1’ = 
i 

-I -I-k-_lxjlp2, P-yYn>O 

1 -k~--lfzI!?% P- Ycc<Q 
@S) 

Formulas (2.5), (2.6) show that for. ,w E D, u D, there exists a unique function 
p1 (w) which f or w E D, is a solution of the equation q(l) (w, p) = 0, while for 
w E D, is given by the formulas 

pL(w)= --?++V -kk) 1 WEF= D$n [a(wf== 

- y-1 J: f / (I -i- 14 - Ycz < 01 

A(W) = St, wEG=Ddl[a(W)2q (2.7) 

This function realizes the maximum of the function q (tc, p) on the variable p in the 
region p < 0. Denoting this maximum by r (w), we have 

r @I = P (~~5 Pl @o = ==t 91 (w, Pf, ui’ E DI !.j & 

We prolong the function r (w) onto the set a, [ ) z 1 = 0, k (p - 1 y I) < 0, 
k = 11 by the formula 

r (4 = p - I Y I7 WED, 

Leaving aside for the present a consideration of the sets If,, M, we prove a lemma in 

the region D, u D, * 
Lemma 2.1. Any impulse control u =: p1 6 realizes a nonpositive increment 

Aq f7. q (WC’), p) - q (w P) < 0 (2.8) 

and bound (2,8f becomes an equality only on the family of controls 

u (tt5, p, m) = m (p - Yc@ja - n I YP I Qh 

IO < m &A, (w, p) = rnia [I, F / t (WI PII 

Proof. Let us assume to the contrary that 
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Aq==l(w,P) -IPI 1 -+“‘,P)>o (2.9) 
From bound (2.9) follow the bounds 

1 (w, P) - I Pl I > 0 (2.10) 

(1 (w, p) - 1 p1 I)” - l2 (a(l), P) = (2.11) 

-2(jyplp.l,p+(p -Ya)ha+ II% I~(wM>O 

Bound (2.11) is violated for any vector pt. The contradiction proves bound (2. 8). The 
equality Aq = 0 implies bound (2.10) and the equality to zero of the left-hand side 

of bound (2.11). From this equality it follows that vectors ~1 and u (w, p, 1) should 
be proportional fan = nu (w, p, 1); n > 0. If the number hl (~7, p) < 1, then the 
maximal admissible value of 1 pl I is the number p. If, however, p / 1 (W, p) > 1, 
then bound (2.10) is violated when for > i . This proves that bound (2.8) becomes an 

equality on the controls of the family u (w, p, m) and only on them. 

Lemma 2.1 permits us to obtain a corollary. 
Corollary 2.1. Any impulse control u = yt6 realizes a nonpositive increment 

Ar = r (w(l)) -r (w) 6 0 (2.12) 

and bound (2.12) becomes an equality only on the family of controls 

ul(%P1(47m) ==-m(P1(4 -ya)6ja --n IYPlhi3 
0 < m < A, (w, Pl (4) (2.13) 

Bound (2.12) is a simple consequence of Lemma 2.1. Let us prove that bound (2.12) 

becomes an equality on family (2.13). By Lemma 2.1 we have the bound q (w(l) (u), u,), 
p) < q (d” (w, u,), p1 (w)), it turns into an equality for p = p1 (w). This signifies that 

Pl (m(*' (w, %I)= p1 (4. The last equality proves that (2.12) becomes an equality on 
family (2.13) and only on it. 

3. Let us compute the right time derivative of the function r (w) relative to Eqs. 
(1.5) in collection with the equation p’ = - I u ( , by separating the derivative into 
two terms 

r’ (w) = R, (w, pl) + R2 (w, PI, w u) 

where p1 = p1 (w) and the term R, (w, pl, u, u) is annihilated when u = u = 0. 
We carry out the computations at first for w E Dr U F because the function 1 (w, pl) 
does not vanish in this region and the computations can be carried out by the rule of 
differentiating the implicit function p1 (w) defined by the equation q(l)(w, p) = 0. 

According to the indicated arguments we have 

R, (~3 ~1) = ply? 1 I J: I 1 (w, pl) + ya t p1 - 1 + I = 

P1/l”[‘YP2/~(W,P1) -(pI-Y4I4/p,21+1 

If in the second term with the brackets we replace the factor Ix I / p12 by the expres- 

sion (pl - yc,) / 1 (w, pl) + k, from the equation q(l) (w, p) = 0 we obtain 

RI (w, ~1 (4) = h / I 5 I ) (1 (w, pt) - k (~1 - ~4) + 1 < 1 (3.1) 

Bound (3.1) is a corollary of bound p1 (w) < 0. The term R, has the form 
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Ri (w, pl, u, 4 = - I u I + ((~1 - ~a) (~a + a) - 
I YPI (UP + 4) / J (4 Pl) (3.2) 

The computation of the derivative r’ (W) for W E E requires details which at the 

same time prove the continuity of the function pt (w) for w E E. The substitution 
z=p -YYa reduces the equation q(l) = 0 to the form 

z (Yo, + 2) + (I 2 ) - h- (ya + 4”) VYP” + 9 = O (3.3) 

while the substitution 1 5 1 = (k - s) ya2 reduces (3.3) to the form 

z (!/a + z)” + (- sym2 - 2ky,z - kz2) r/y+ + 22 = 0 (3.4) 

We carry out the examination for small 1 ZJ~I > 0 in neighborhoods of regions E,, 
E,, E3 separated from region E by the relations [S = 01, [ - 1 < s < 0; 0 < 
~(11, Is= -11, wheres(w) =k --\xI/Y,‘. 
In the neighborhood of region Er we employ the substitution z = 2s 1 Yp 1 which 
gives Eq. (3.4) the form 

s I Yal ((2 - 1) yx2 + P (w, Z)) = 0 (3.5) 

We denote the collection of s, ya, ( yp (, k by w . The function P (w, z) is conti- 
nuous and vanishes for s ( yp I = 0. The form of Eq. (3.5) shows that in the neighbor- 

hood of region E, the solution z (w) of Eq. (3.3) can be represented in the form 

21 (w) = 2, (w) s 1 ypl, s = k - Ix 1 / ~a’ (3.6) 

Here 2, (W) is a positive bounded function which nulls the third factor in the left-hand 
side of Eq. (3.5). 

In a neighborhood of regions E,, E, we study a corollary of Eq. (3.3) taken in the 

form 
22 (yol + 2) ‘A - ( ) 5 I - k (ya + z)~Y (YP” + 2”) = 0 (3.7) 

In a neighborhood of region E, the substitution 

(XT\= ya2(k-s), -- 2 = (s/ v 1 - s” + 2) I YP I 

takes (3.7) to the form 

P, + P,Z + PO = 0 (3.8) 

Here P, is a polynomial in 2 of degree not less than second, with continuous coeffici- 

ents; P,, P, are continuous and do not depend on Z ; P, does not vanish for 1 yp( = 0, 
S # 0, while P, does vanish for /Ypl = 0. Denoting by Z2 (w) the continuous solu- 
tion of Eq. (3.8), vanishing for ( yp I = 0, we obtain the solution of Eq. (3. 7) in the 

form 
Zl(@ = (s/VI - s2 + &A (4) I YP I (3.9) 

In the neighborhood of region E, it is convenient to present Eq. (3.7) in the form 

$ (w, 4 = $1 (w, 4 + % (WY 4 = 0 

q1 (w, z) = z2 (z --,A) (2y, + h + z) [(~a + 4” (1 - 4 + 

(h t-- yC$(l + k)l 

q2 (w, z) = - [(h + y2 (1 + 4 - k (~a + @I2 I ~a? 
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Here 3\ denotes the function - v’ 1 x 1 / (1 + k) - y,, equal to zero when s = 

k - 1 iz ) / ZJ,~ = -1. 
The substitution 

2 = zy;j, + l /* (h - I a I) 

permits us to obtain, for 2 < 0 , the bound 

11) (w, 2) = $3 (w, 2) > Y$ [(I -t ii) 4ya3 z3 -4ya4 + P&w, -aI (3.10) 

turning into an exact equality when ( Y,?] Z - 0. The function Pa (2~7, 2) depends 
continuously on W, 2 and vanishes when 1 yp 1 = h = 0. Bound (3.10) shows that the 

equation $3 (w, Z)= 0 admits of a strictly negative bounded solution Z3 (w) < 0 

for 1 YB 1 > 0. This means that the solution of Eq. (3.7) can be represented in the form 

21 (4 = 2, (4 IY~lZ3 + l/T (a (w) - I ?L (w) I ) < 0 (3.11) 

in the neighborhood of region Ea. 

It is not difficult to verify that the function z1 (w) given by formulas (3.9) (3.11) is 

a solution of Eq. (3.3). Indeed, from Eq. (3.7) follows either Eq. (3.3) or the equation 

2 (YE + 2)” + (sY,” -k 2ky,’ + kz2) J&/p2 + .z2 = 0 (3.12) 

However, the substitution of expressions (3.9), (3.11) into the left-hand side of (3.12) 
shows that Eq. (3.12) is automatically violated for sufficiently small ) Yal. The appli- 
cation of equality (3.9) permits us to express the derivative r’ (w) in the form 

I^’ (w) = 1 - 1 u J + s(u, + Da) - 1/l - 9 v’(up + up)Z + (uy + uY)z (3.13). 

in region E, . For w E E, the increment Ar of function r (w) can be represented 
as 

Ar = A I x I J ya + Ap + SAY, + P (w, Aw, z (w + Aw)) 

where the function P does not contain terms of dimensions less than two in the incre- 
ments Ax, Ay,, A ( yeI , AZ (w) = z (W + Aw). A division by At and a passing 
to the limit as At -+ 0 yield, according to (3.11). the equation 

2’ (w) = 1 - I u I + s (ua + h) 

It shows that equality (3.13) is valid also for .s = - 1. Analogous calculations show 
the validity of equality (3.13) also for s = 0. 

4. The relations obtained above allow us to construct the control 

rJ1 (w> = -[(P, - Yc& - I YBI iP1 / J (w, PI), w E 4 u F (4.1) 

u1 (4 = - s (4 ja + Vi - 3 (4 (~0s cpip + sin cpi,), WEE (4.2) 

u1 (w) = y I I y I, w E Do, II x I = 0, p - I y 1 < 0, k = II (4.3) 

where the angle cp in formula (4.2) is arbitrary, and to prove a theorem. 
Theorem 4.1. Any admissible pair u (w, u), u1 (w) cannot lead the trajectory 

from the region M, = [I 2 I > 0; r (w) ( 01 u D onto set M in finite time. 
Proof. We assume to the contrary that w (0) E M. and LC (0) > 0, but that the 

equality I (‘6) = () is fulfilled for some finite ‘G > () . Since the trajectory has only 
a finite number of jumps, we have 
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I x (4 I* = - I Y c-g I, I YB ((z) I = 0 (4.4) 

The equation 9(i) (w, p) = 0 and formula (2.8) permit us to obtain the bound 

Pi (W) < - r/ lAlt.I / (I $- k) from which follows the equality 

lim (I x ) ip, (w)) = 0, t - z 
Moreover, the relations 

lim (pI (u (t)) - ya (1)) = 0, t + z, k = 0 

p1 (w (L)) - ya(t) > 0, t ---f Tt, k = 1 

(4.5) 

(4.6) 

are valid. Indeed, when ycc (T)< 0 and k = 0, lim s (w) = Iim - ( z ( / y: = 0 
as t -+ T, and formula (3.6) establishes the first equality. The equality lim s (w) = 1 
as t + T, is valid when k = 1, 9, (T) < 0 , and formula (3. 9) establishes the second 
relation in system (4.6). Furthermore. Corollary 2.2 and formulas (3. l), (3,2),(3.13) 
permit us to establish that the function r (w) does not grow along any admissible tra- 

jectory corresponding tc the oair u (w, u), ut (w). Equalities (4.4), (4.5). and relations 
(4.6) permit us to establish the bound 

lim r- (W (‘6)) = p (‘6) -k I y (‘G) [ < 0, TV 

(it can be established for ya (‘6) = 0 by contradiction). This bound establishes the 

continuity of r (w) for w E D,, and shows that the phase constraint lr > 0 is violated 
when 1~ = 0 , while the inclusion W (‘6) E D, is valid when k = 1. The passage 

from region DO with u = ui(ru) is possible only in the region [ 1x1 > 0, r (w) < 01. 
The proof is completed. 

The preceding results naturally lead to a consideration of the function ps (W) , namely, 
the smallest root of the equation Q (W, p) = 0 in the region .kro [r (w) > 0; 1 z 1 > 

01, of the controls 

% (4 = (Pz - Ya) sjcl - I ypl 61’0 
v2 (4 = - u2 (4 / I u2 (w) 1 I w E CD1 U 0 12 Lr (w) > 01 (4.7) 

uz (w, u) = - u ‘I 
v‘2 (w) = Ul (w) ( 

zu r- E fl [r (w) = 01 (4.8) 

(the unit vector ~2 (w) is antiparallel to the vector us (w) ), as well as of the function 

T(w) = - IJ: Iipz(w); w E (01 U F U E) fl [r (w) > 01 

T (w) = 0, w E M 

The derivative (T (w))’ has the form 

(T (w))’ = - 1 - (2 -k (pz - ya)) / (pzq(l)) - 

I x I (R, (WY u, 4 + 1) / (Ih2Q”)) 
for w E (Dl IJ F) n [r (w) > 01 . Here 

q(1) = q’l’( w, pJ := - (pz - ya) / 1 + k - I x: I pz2 > 0 

Pz = P2 (w) < 0 

(4.9) 

1 = 1 tw, Pi) = IcYa” + (p,, - y,)Z (4.10) 
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R, (w, u, v) = - I u 1 + [(P, - !h) (~a + h) - 1 YPI(UP + Q)] z-l 
The bound q(l) > 0 follows from the definition of function pz (w) as the smallest 
root of the equation q (w, p) = 0, while the bound p2 (w) < 0 follows from the obvi- 

ous inequality pz (w) < p1 (w) < 0. The bound 

T’ (w, u (w, d, v2 (w)) > - 1 for w E (Or U F) fl [r(w) > 01 (4.11; 

follows from formulas (4.9), (4.10). Lemma 2.1 allows us to deduce - 
Corollary 4.1. Any impulse control u = ~~6 preserving the inclusion u’(i) (nJ1 

u) E M” realizes the nonnegative increment 

AT = T (w”‘) - T (w) > 0 (4.12) 

and bound (4.12) becomes a strict equality only on the family of controls mw, (w), 
O<m<l. 

Proof. By Lemma 2.1 we have 4 (w(l), P) < Q (w, P) and the bound 

* (u&l) t Pz (4) < Q (WI P2 (4) = 0 

is valid whe,. u # mu, (w) . From this bound follow the bounds 

P2 bw ) Pe (4, / AT>0 

If, however, the control is taken from the family mu, (u), then by the lemma, q (w(l), 

~1 < q (w, P < 11~ (~1)~ and Q (w(l), ~1~ (ID)) -= q (w, pz (w)) = 0. This means that 

pz (w(l)) = p2 (w) and AT -- 0. 
In the region [ ( IL: ( > 0, r (w) = 01 , Lemma 2.1 and formulas (3.1),(3.2),(3.13) 

show that any control u # u2 (w, v) in pair with us (w) leads the position into the 

region [/XI > 0, r (w) < 01. The only exception is the position w E E, fl 

[J- (w) = 01 at which any control 

u* = I.&, r-&c < 0 

preserves the equality F’ (W) = 0 , while the derivative (T (0~))’ has the form 

‘Iheboundu,~-l~l/,(~+l) is equivalent to the bound s’(w, u*, u2 (w))< 0. 

This signifies that from the bound (T (w))’ < - 1 there follow the bounds ua + 

1 < 0, s’ (U’, u*, u2 (w)) < 0 which show that any finite control u.* realizing the 
inequality (T (w))’ < - 1, instantaneously leads the position into region E,. However, 
at this position impulse controls u = l_t16 are inadmissible since they realize the inclu- 
sion w(l) E [r (W) < 01. The continuity of the functionsp2(w),T(w) and pl(w) in the 

region [ ( z 1 > 0, r (w) > 01 follows from the implicit function theorem. 
In the region I I 5 ( > 0, r (W) = 01 we assume to the contrary that there exists a 

sequence 1~‘i -+ w as t -+ cm such that the sequence pz (Wi) does not converge to 
p3(w). Obviously. it cannot be unbounded and cannot have p = 0 as its limit point, 
since q (20, p) + - 00 as p ---f - 0, - ~0. Consequently, p3 exists; p2 (w) # 
ps < 0 is the limit point of the sequence p2 (wi), and 9 (w, pa) = 0 as a conse- 
quence of the continuity of the function q (w, p). The equalities r (w)=q (w, p3)=(), 
Pl(4 = Pz (w) contradict the bound r (w) > q (w, p) for 0 > p # p1 (w)_ 
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We note that by an analogous reasoning we can independently prove the continuity of 
the functions pi (w), r (w) for 1 x I> 0. Let p4 (w) # p1 < 0 be the limit point 
of the sequence pl(wi), then q (w, p4) < r (w); on the other hand, the opposite bound 

r (W) = q (w, PI (W)) < 4 (W, Ps) follows from the bound q (wi, pl (W)) & Q (wi7 
p1 Cwi)). 

All of the preceding arguments and bounds (4. ll), (4.12) allow us to assert that no 

pair u (w, u), us (w) whatsoever can lead the position onto M earlier than at the 
instant T (w). On the other hand, any pair ua (w, v), u leads the position onto M at 
precisely the instant T (w), In spite of the fact that the study of the structure of the 

derivative of T for w E E n Ir (w) = 01 can permit us to construct a control 

us (W, U) which leads the position onto M earlier than at the instant T (w) when 
U + Va (W), the answer to this question cannot improve the result when v == v2 (w). 

In summary we can state a theorem, 
Theorem 4. 2. The pair of controls u” = u~(w, U) , zf = U, (w) solves Prob- 

lem 1 in the region M” [r(w) > 0; 1 x I> 01 with a time T [u’, ~“1 = T(W). 
Theorems 4.1 and 4.2 permit us to subdivide the whole space of positions into two 

sets 
W”(M) = M” u M, We,(M) = M, 

in the first of which Problem 1 can be solved, while in the second, Problem 2. 

Fig. 1 Fig. 2 

5. Let us give a brief geometric interpretation of the results. Suppose that 
the plane of the diagram (Fig. 1) contains the vector II: # 0 (OA) and the vector 

Y (AB). The first player’s optimal action is the realization of the impulse us (w) (BC), 
so that the vector t/l) (A C) is antiparallel to vector x and equals the quantity 1 p,(u,) 1 
in absolute value, where pz (w) is the smallest root of the equation Q (w, p) = 0. The 
second player’s action is represented by the vector us (w) antiparallel to vector us (w) 

In what follows the inclusion w(l) (t) E E fl [r(w) = 01 is valid for t > 0 and the 
second player realizes the optimal control S(W) = vZ (w); w E E n tr (w) = 01. 
The component of the vector, perpendicular to vector x, is arbitrary in direction in the 
plane normal to x, while its modulus tracks along the unit circle (O,, 0,) when li = 0 
and along the unit circle (O,, 0) w h en k = 1 (Fig. 2). The component U, tracks 
along the segment (AlO) when k = 0 (Fig. 3) and along the segment (A #iA,) 

when k = 1. 
Let us make a comparison with the one-dimensional analogs of the cases k = 0 and 

k = 1 . When k = 0, z > 0 the obvious optimal actions of both players are the controls 
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uo zz 
- $4 VQ = j-1 = va 

and contact takes place at the instant 

T [u”,vo] = (l/z) [- 6, - p) - I/(Y, - p)” - 4r1 

in the region W” [y, - p < 2 1/T]. In case 
k =I [4] the optimal control is v” = vcL = +I 

on the whole set W”. At positions of the one- 
dimensional analogs, which in the sense of the 

equali ties 

I X(l) I = I cr I, Ya = 0, Ya = Y(l), p = P(l) 

duplicate the positions in the three-dimensional 

Fig. 3 problem, the optimal time is strictly less than 
the optimal time in the three-dimensional prob- 

lem. This fact is explained by the absence of a lateral maneuver in the one-dimen- 

sional problem. 
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We examine the problem of the optimal control of linear systems with aftereffect 
and with quadratic performance criterion. We distinguish the class of such sys- 
tems for which the corfficients of the optimal control and of the functional to 

be minimized are computed in explicit form. 

1. Let there be given the controlled system 

2’ (t) = A (t) J (t) + B (t) x (t -15) + D (t) u (t), 0 ,( t < T (1.1) 

Here the vector x (t) belongs toan Euclidean space &, of dimension n, the control 

u (t) E R,,, the constant h > 0, and A, B, D are given matrices with piecewise- 


